Tech

NASA to test technology for X-59’s unique shock wave measurements

Share
Share
NASA to test technology for X-59's unique shock wave measurements
A close-up of NASA’s shock-sensing probe highlights its pressure ports, designed to measure air pressure changes during supersonic flight. The probe will be mounted on NASA’s F-15B Aeronautics Research Test Bed for calibration flights, validating its ability to measure shock waves generated by the X 59 as part of NASA’s Quesst mission to provide data on quiet supersonic flight. Credit: NASA

NASA will soon test advancements made on a key tool for measuring the unique “sonic thumps” that its quiet supersonic X-59 research aircraft will make while flying.

A shock-sensing probe is a cone-shaped air data probe developed with specific features to capture the unique shock waves the X-59 will produce. Researchers at NASA’s Armstrong Flight Research Center in Edwards, California developed two versions of the probe to collect precise pressure data during supersonic flight.

One probe is optimized for near-field measurements, capturing shock waves that occur very close to where the X-59 will generate them. The second shock-sensing probe will measure the mid-field, collecting data at altitudes between 5,000 to 20,000 feet below the aircraft.

When an aircraft flies supersonic, it generates shockwaves that travel through the surrounding air, producing loud sonic booms. The X-59 is designed to divert those shock waves, reducing the loud sonic booms to quieter sonic thumps. During test flights, an F-15B aircraft with a shock-sensing probe attached to its nose will fly with the X-59.

The roughly 6-foot probe will continuously collect thousands of pressure samples per second, capturing air pressure changes as it flies through shock waves. Data from the sensors will be vital for validating computer models that predict the strength of the shock waves produced by the X-59, the centerpiece of NASA’s Quesst mission.

“A shock-sensing probe acts as the truth source, comparing the predicted data with the real-world measurements,” said Mike Frederick, NASA principal investigator for the probe.

For the near-field probe, the F-15B will fly close behind the X-59 at its cruising altitude of approximately 55,000 feet, utilizing a “follow-the-leader” setup allowing researchers to analyze shock waves in real time. The mid-field probe, intended for separate missions, will collect more useful data as the shock waves travel closer to the ground.

The probes’ ability to capture small pressure changes is especially important for the X-59, as its shock waves are expected to be much weaker than those of most supersonic aircraft. By comparing the probes’ data to predictions from advanced computer models, researchers can better evaluate their accuracy.

“The probes have five pressure ports, one at the tip and four around the cone,” said Frederick. “These ports measure static pressure changes as the aircraft flies through shock waves, helping us understand the shock characteristics of a particular aircraft.” The ports combine their measurements to calculate the local pressure, speed, and direction of airflow.

Researchers will soon evaluate upgrades to the near-field shock-sensing probe through test flights, where the probe, mounted on one F-15B, will collect data by chasing a second F-15 during supersonic flight. The upgrades include having the probe’s pressure transducers—devices that measure the air pressure on the cone—just 5 inches from its ports. Previous designs placed those transducers nearly 12 feet away, delaying recording time and distorting measurements.

Temperature sensitivity on previous designs also presented a challenge, causing fluctuations in accuracy with changing conditions. To solve this, the team designed a heating system to maintain the pressure transducers at a consistent temperature during flight.

“The probe will meet the resolution and accuracy requirements from the Quesst mission,” Frederick said. “This project shows how NASA can take existing technology and adapt it to solve new challenges.”

Citation:
NASA to test technology for X-59’s unique shock wave measurements (2024, December 6)
retrieved 6 December 2024
from

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.

Share

Leave a comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Related Articles
PowerSchool breach worse than thought, company says “all” student and teacher data accessed
Tech

PowerSchool breach worse than thought, company says “all” student and teacher data accessed

Threat actors accessed PowerSchool student information system and stole data on students...

The Unreal Tournament soundtrack is getting a new remix album, and we’ve got exclusive early access to three tracks
Tech

The Unreal Tournament soundtrack is getting a new remix album, and we’ve got exclusive early access to three tracks

Tournament Rematch: Unreal Tournament Remixed arrives on January 24 It features 27...

Millions of hotel users see personal info checked out in huge data leak
Tech

Millions of hotel users see personal info checked out in huge data leak

CyberNews researchers have discovered a huge data leak The dataset contained the...

Exploits on the rise: How defenders can combat sophisticated threat actors
Tech

Exploits on the rise: How defenders can combat sophisticated threat actors

The good news? Cybersecurity is witnessing a steady evolution. Organizations across EMEA...